
Screen Space Indirect Lighting
with Visibility Bitmask

Screen Space Indirect Lighting with Visibility
Bitmask

• A multi-institution collaboration:
• Olivier Therrien (CDRIN)

• Yannick Levesque (Cégep de Matane)

• Guillaume Gilet (University of
Sherbrooke)

• Special thanks to Peter Shirley

• Publication links:
• https://link.springer.com/article/10.1007/s00371-022-02703-y

• https://arxiv.org/abs/2301.11376

https://link.springer.com/article/10.1007/s00371-022-02703-y
https://arxiv.org/abs/2301.11376

Motivation

• Screen space?! Is this 2012?
• Ray tracing is still expensive, and requires deep integration with the game

• Screen space is fast, and it’s just a post-process

• Best in class GI frameworks still use some screen space (Lumen, AMD GI-1.0)

• Instant lighting changes

• Low noise -> No ghosting, smearing or blur

• Preserves sharp details

• Mod friendly (our method is now in the RTGI Reshade shader)

Existing work: SSGI

• Unity and UE4 have an SSGI Our method
SSGI implementation

• Based on screen tracing
similar to SSR
• Hi-Z Screen Space Tracing

• Very noisy: Most rays pass
behind surfaces or escape
outside the screen
• Maximum 1 sample

per ray (per pixel)

Existing work: HBIL [Mayaux 2018]

• Horizon-based technique similar
to HBAO/GTAO
• Low noise compared to Screen

Space Tracing

• Works by integrating the light
between two horizon angles (Source: [Mayaux 2018])

• Caveat: Cannot handle thin
surfaces properly
• All the space below the maximum

horizon angle h1/h2 gets integrated

Our method: Visibility Bitmask

• We replace horizon angles by a bitmask

• Surfaces now have a thickness (constant)
• Thickness is used to compute “back-face”

angle (lower black dotted lines)

• Sectors (bits) that are in-between front-face
and back-face angles get blocked (set to 1)
• Multiple sectors can be blocked at once by a

single sample via bitwise operations

• For ambient occlusion we simply count the
number of set bits divided by bitmask size

Screen space sampling

• A sampling direction is chosen randomly
per pixel

• Samples are taken non-uniformly on the
screen (more close to pixel, less farther
away)

• Sample debug colors
• Cyan: Rejected (sector already occluded)

• Red: Occlusion only (not facing pixel)

• Black or other color: Can contribute lighting

• Most samples do not contribute! (cyan)

Sampling (from another point of view)

• Slice is aligned to the
sampling line

• Samples have front-face and
back-face projection lines
that can block sectors

• Surface normal is rarely
on the slice, we compute a
projected normal n

• Samples are taken each side
of view vector, not normal

Random slice sampling direction

• Slice direction is taken at random
for each pixel according to a gradient
noise

• Can also have more than 1 direction
per pixel (multi-sampling)

• Rotation is done in 2D on the screen
• Slice projected normal can get very

different from the surface normal

Bitmask size & rounding function

• More sectors is better
for quality, but 32 is
good enough for AO
and indirect diffuse

• Rounding functions:
• Round: Sample covers

at least half a sector
(most consistent one)

• Ceil: Sample touches
the sector

• Floor: Sample covers
the entire sector

Limitation: Light leaks from hidden surfaces

• Typical problem with single
layer depth buffer

• Thickness is known (constant)
but not the distance to next
surface (or if there is a next
surface)
• Algo assumes there is nothing

behind (causes missing occlusion)

Performance (AO, RTX 2080)

• Slight ALU overhead
• Not very noticeable because the

algorithm is bandwidth limited

• Need to use acos() for every
sample. It’s a bit more expensive
even with fast approximation

• Increasing the sampling radius is more costly, less samples reside in
cache
• Large radius tend to hide the ALU cost even more as bandwidth gets even

more the limiting factor

Directional occlusion of ambient light

• Compatible with any ambient source
• Spherical harmonics probes

• Reflection probes

• Irradiance cubemap

• Others

• Sample the ambient source in X directions
• a1 .. a4: We divide the hemisphere in 4

sub-regions and sample in the center direction

• Multiply sampled light color by the ratio of
un-occluded sectors per sub-region
over sector count per sub-region

Directional occlusion (reflection probes)

• There is no diffuse bounce in those images (only ambient)

• Most games just multiply ambient source by pixel AO
(uniform AO)
• Fails to reconstruct directional color changes and indirect shadows

• Multisampling a detailed ambient source like reflection
probes and apply occlusion directionally (per sample)
gives much richer ambient light

• Directional light changes are very noticeable

• Can create large indirect soft shadows (column)

• Please do this in your game ☺
• Much cheaper to compute than a GI bounce, yet it accounts for

most of the “Wow” effect

Indirect diffuse algorithm

• Top: Yellow sample intersects one
un-occluded sector and can contribute
lighting. The sector is set to an occluded
state for subsequent samples

• Bottom: Sampling continues and a new
object on the right is found, but it intersects
an already occluded sector, so it cannot
contribute lighting. The yellow sample on
the left crosses an un-occluded sector and
can contribute

Direct lighting only

Indirect diffuse (final result)

Indirect diffuse (light only)

Banding artifact

• Banding can appear when source of light is intense
and small
• This is dependent on the step size: distance between

samples becomes visible

• Some pixels find the light source, others miss it

• The solution we found is jittering the steps for each
pixel
• Reusing samples between pixels can also help

• More research: ideally we would want to identify
important surfaces on the screen and make sure
every pixel samples it

Limitation: Out of screen light

• Light needs to be on screen to
contribute a bounce
• Especially visible with long rays and

intense light

• Can be mitigated by reducing GI
strength, and relying more on
ambient lighting

• Ultimately would need to continue
sampling outside the screen
• Realtime cubemap around camera?
• Ray tracing?

Limitation: Occluded light

• Light behind other surfaces cannot contribute
• Especially visible with long rays

• Can be mitigated by reducing GI strength, and
relying more on ambient lighting

• No easy fix
• Deep G-Buffers? (Would also need back-faces)

• Stochastic Depth?

• Also: lit surfaces at grazing angles can
be only 1-2 pixel wide on screen
• Would require something like multi-view rendering

Performance (indirect diffuse, RTX 2080)

• Lots of samples + large
radius can be expensive
• Color (B10G11R11)

• Normal (R8G8B8A8)

• Depth (R32)

• Can use lower resolution
MIP level for farther away
samples to reduce
bandwidth

Specular light

• Visibility bitmasks can also
be used to model GGX
specular lobe!

• We reuse diffuse samples
so the overhead is small
• More ALU to handle GGX, but

same bandwidth

• Good enough for rough
specular, but sharp reflections
would require more samples

Conclusion

• We presented a screen space technique that is more accurate than
previous methods for thin surfaces
• Ambient Occlusion

• Directional occlusion of ambient light
• This makes a huge difference over simply applying AO on top of normal ambient

• Comparable to bent normal but can handle thin surfaces

• Indirect diffuse lighting

• Performance is comparable to previous methods for AO and ambient
• Indirect lighting is more costly, but still cheap enough for a lot of games

• Rough specular is possible with little added cost over indirect light

Thank You!

	Slide 1: Screen Space Indirect Lighting with Visibility Bitmask
	Slide 2: Screen Space Indirect Lighting with Visibility Bitmask
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Motivation
	Slide 10: Existing work: SSGI
	Slide 11: Existing work: HBIL [Mayaux 2018]
	Slide 12: Our method: Visibility Bitmask
	Slide 13: Screen space sampling
	Slide 14: Sampling (from another point of view)
	Slide 15: Random slice sampling direction
	Slide 16: Bitmask size & rounding function
	Slide 17: Limitation: Light leaks from hidden surfaces
	Slide 18: Performance (AO, RTX 2080)
	Slide 19: Directional occlusion of ambient light
	Slide 20: Directional occlusion (reflection probes)
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Indirect diffuse algorithm
	Slide 25: Direct lighting only
	Slide 26: Indirect diffuse (final result)
	Slide 27: Indirect diffuse (light only)
	Slide 28: Banding artifact
	Slide 29: Limitation: Out of screen light
	Slide 30: Limitation: Occluded light
	Slide 31: Performance (indirect diffuse, RTX 2080)
	Slide 32: Specular light
	Slide 33: Conclusion
	Slide 34: Thank You!

