Screen Space Indirect Lighting
with Visibility Bitmask

Screen Space Indirect Lighting with Visibility
Bitmas

e A mu |ti-i nstitution co | | d b oration: Screen Space Indirect Lighting with Visibility Bitmask
i O I iVi e r Th e r ri e n (C D R I N) Olivier Therrien'! Yannick Levesque®? Guillaume Gilet®
* Yannick Levesque (Cégep de Matane)

e Guillaume Gilet (University of
Sherbrooke)

* Special thanks to Peter Shirley

CDRIN, QC. Canada
p de Matane, QC, Canada

. . .
([.
o 1: Direct illumination of the scene. Middle: Indirect lighting produced by our method (without texture). Right: Final frame

ith our method, exhibiting directionally occluded ambient lighting, and a GI bounce that avoids typical thin surface artifacts.

° Abstract
Horizon-based indirect illumination efficiemtly estimates a diffuse light bounce in screen space by analytically integrat-
ing the horizon angle difference between samples along a given direction. Like other horizon-based methods, this technique
L4 cannot properly simulate light passing behind thin surfaces. We propose the concept of a visibility bitmask that re-

places the two horizon angles by a bit field representing the binary state (occluded / un-occluded) of N sectors uniformly
distributed around the hemisphere slice. It allows light to pass behind surfaces of constant thickness while keeping the ef-
fictency of horizon-based methods. It can also do more accurate ambient lighting than bent normal by sampling more than
one visibility cone. This technique improves the visual quality of ambient occlusion, indirect diffuse, and ambient light com-

pared to previous screen space methods while minimizing noise and k g a low performance overhead.

Keywords: Real-Time Rendering, Indirect Lighting, Ambient Occlusion, Visibility

https://link.springer.com/article/10.1007/s00371-022-02703-y
https://arxiv.org/abs/2301.11376

\

_

"

A NN

7
000 Y

/////Z
h

Motivation

e Screen space?! Is this 20127
* Ray tracing is still expensive, and requires deep integration with the game
* Screen space is fast, and it’s just a post-process
* Best in class Gl frameworks still use some screen space (Lumen, AMD GI-1.0)

* Instant lighting changes

* Low noise -> No ghosting, smearing or blur

* Preserves sharp details

* Mod friendly (our method is now in the RTGI Reshade shader)

Existing work: SSGH

* Unity and UE4 have an SSGI Our method
SSGI implementation Wl yig

e Based on screen tracing
similar to SSR

+ Hi-Z Screen Space Tracing ' 8

* Very noisy: Most rays pass
behind surfaces or escape g
outside the screen

* Maximum 1 sample
per ray (per pixel)

Existing work: HBIL [Mayaux 2018]

* Horizon-based technique similar
to HBAO/GTAO

* Low noise compared to Screen
Space Tracing

* Works by integrating the light
between two horizon angles

e Caveat: Cannot handle thin
surfaces properly

* All the space below the maximum
horizon angle h1/h2 gets integrated

Our method: Visibility Bitmask

* We replace horizon angles by a bitmask

 Surfaces now have a thickness (constant)
* Thickness is used to compute “back-face”
angle (lower black dotted lines)

 Sectors (bits) that are in-between front-face
and back-face angles get blocked (set to 1)

* Multiple sectors can be blocked at once by a
single sample via bitwise operations

* For ambient occlusion we simply count the
number of set bits divided by bitmask size

Screen space sampling

* A sampling direction is chosen randomly
per pixel

 Samples are taken non-uniformly on the |
screen (more close to pixel, less farther
away)

e Sample debug colors
e Cyan: Rejected (sector already occluded)
e Red: Occlusion only (not facing pixel)
* Black or other color: Can contribute lighting

* Most samples do not contribute! (cyan)

Sampling (from another point of view)

e Slice is aligned to the
sampling line

i |4
NE TN

e Samples have front-face and
back-face projection lines
that can block sectors

e Surface normal is rarely
on the slice, we compute a
projected normal n

:
u

 Samples are taken each side
of view vector, not normal

Random slice sampling direction \

* Slice direction is taken at random
for each pixel according to a gradient
noise

e Can also have more than 1 direction
per pixel (multi-sampling)
e Rotation is done in 2D on the screen

* Slice projected normal can get very
different from the surface normal

Bitmask size & rounding function

* More sectors is better
for quality, but 32 is
good enough for AO
and indirect diffuse

* Rounding functions:

* Round: Sample covers
at least half a sector
(most consistent one)

* Ceil: Sample touches
the sector

* Floor: Sample covers
the entire sector M-

64 sectors

16 sectors

Limitation: Light leaks from hidden surfaces

e Typical problem with single
layer depth buffer

* Thickness is known (constant)
but not the distance to next
surface (or if there is a next
surface)

* Algo assumes there is nothing
behind (causes missing occlusion)

Performance (AO, RTX 2080)

* Sllght ALU overhead Radius Sample Count GTAO Our Method
* Not very noticeable because the 0.8 3 0.49 ms 051 ms
algorithm is bandwidth limited 1 12 0.75ms 0.77 ms
* Need to use acos() for every : 16 095ms 0.97ms
sample. It’s a bit more expensive 2 16 L12ms 1.13ms
3 16 1.12 ms 1.13 ms

even with fast approximation

* Increasing the sampling radius is more costly, less samples reside in
cache

e Large radius tend to hide the ALU cost even more as bandwidth gets even
more the limiting factor

Directional occlusion of ambient light

* Compatible with any ambient source
* Spherical harmonics probes
» Reflection probes
* Irradiance cubemap
e Others

* Sample the ambient source in X directions

* al .. a4: We divide the hemisphere in 4
sub-regions and sample in the center direction

* Multiply sampled light color by the ratio of
un-occluded sectors per sub-region
over sector count per sub-region

Directional occlusion (reflection probes)

* There is no diffuse bounce in those images (only ambient)

* Most games just multiply ambient source by pixel AO
(uniform AO)

* Fails to reconstruct directional color changes and indirect shadows

* Multisampling a detailed ambient source like reflection
probes and apply occlusion directionally (per sample)

gives much richer ambient light

* Directional light changes are very noticeable
* Can create large indirect soft shadows (column)

* Please do this in your game ©

* Much cheaper to compute than a Gl bounce, yet it accounts for
most of the “Wow” effect

i ,‘./

A S
\Zmamr
///////%f.g

.////41, m_,. .ﬂ =3 |ll__».

T e DRASCETET

l

Ire

D

LT T

{

i

iffuse

D

5

1

| AO + Ind

@

fona

Irec

D

Indirect diffuse algorithm

* Top: Yellow sample intersects one
un-occluded sector and can contribute
lighting. The sector is set to an occluded
state for subsequent samples

* Bottom: Sampling continues and a new
object on the right is found, but it intersects
an already occluded sector, so it cannot
contribute lighting. The yellow sample on
the left crosses an un-occluded sector and
can contribute

Direct lighting only

Indirect diffuse (final result)

A

‘ﬁ

I.-v

?’

Indirect diffuse (light only)

Banding artifact

* Banding can appear when source of light is intense
and small

* This is dependent on the step size: distance between
samples becomes visible

* Some pixels find the light source, others miss it

* The solution we found is jittering the steps for each
pixel

e Reusing samples between pixels can also help

* More research: ideally we would want to identify
important surfaces on the screen and make sure
every pixel samples it

Non-Jittered

Jittered

Limitation: Out of screen light

* Light needs to be on screen to
contribute a bounce i

* Especially visible with long rays and
intense light

e Can be mitigated by reducing Gl
strength, and relying more on
ambient lighting a3
e Ultimately would need to continue 5
sampling outside the screen

e Realtime cubemap around camera?
* Ray tracing?

Limitation: Occluded light

* Light behind other surfaces cannot contribute
* Especially visible with long rays

* Can be mitigated by reducing Gl strength, and
relying more on ambient lighting

* No easy fix
* Deep G-Buffers? (Would also need back-faces)
 Stochastic Depth?

* Also: lit surfaces at grazing angles can
be only 1-2 pixel wide on screen ‘

* Would require something like multi-view rendering

Performance (indirect diffuse, RTX 2080)

* Lots of samples + large
radius can be expensive
e Color (B10G11R11)
 Normal (R8G8B8AS)
e Depth (R32)

e Can use lower resolution
MIP level for farther away

samples to reduce
bandwidth

Configuration Sampling | Denoising | Total

a) 8 samples, radius 1, |9 | 033 ms | 1.23ms
const. steps, full res.

b) 8 samples, radius 4, | 5 1 033 ms | 2.03ms
const. steps, full res.

c) 16 samples, radius 4, 73 ms 033 ms 5 63 ms
const. steps, full res.

d) 16 samples, radius 4, | 5 ¢ 033ms | 2.93 ms
exp. steps, full res.

¢) 32 samples, radius 4, |,) o 033ms | 433 ms
exp. steps, full res.

D) 16 samples, radius 4, | 97 1\ | 0.1 ms 1.07 ms

exp. steps, half res.

Specular light

* Visibility bitmasks can also
be used to model GGX
specular lobe!

* We reuse diffuse samples
so the overhead is small

* More ALU to handle GGX, but
same bandwidth

* Good enough for rough
specular, but sharp reflections
would require more samples

Conclusion

* We presented a screen space technique that is more accurate than
previous methods for thin surfaces
 Ambient Occlusion

* Directional occlusion of ambient light
* This makes a huge difference over simply applying AO on top of normal ambient
* Comparable to bent normal but can handle thin surfaces

* Indirect diffuse lighting

* Performance is comparable to previous methods for AO and ambient
* Indirect lighting is more costly, but still cheap enough for a lot of games

* Rough specular is possible with little added cost over indirect light

Thank You!

CORIN

Centre de développement
et de recherche en
intelligence numérique

	Slide 1: Screen Space Indirect Lighting with Visibility Bitmask
	Slide 2: Screen Space Indirect Lighting with Visibility Bitmask
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Motivation
	Slide 10: Existing work: SSGI
	Slide 11: Existing work: HBIL [Mayaux 2018]
	Slide 12: Our method: Visibility Bitmask
	Slide 13: Screen space sampling
	Slide 14: Sampling (from another point of view)
	Slide 15: Random slice sampling direction
	Slide 16: Bitmask size & rounding function
	Slide 17: Limitation: Light leaks from hidden surfaces
	Slide 18: Performance (AO, RTX 2080)
	Slide 19: Directional occlusion of ambient light
	Slide 20: Directional occlusion (reflection probes)
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Indirect diffuse algorithm
	Slide 25: Direct lighting only
	Slide 26: Indirect diffuse (final result)
	Slide 27: Indirect diffuse (light only)
	Slide 28: Banding artifact
	Slide 29: Limitation: Out of screen light
	Slide 30: Limitation: Occluded light
	Slide 31: Performance (indirect diffuse, RTX 2080)
	Slide 32: Specular light
	Slide 33: Conclusion
	Slide 34: Thank You!

